Mercurial > projects > pwm
comparison compat/queue.h @ 17:a08ef0674d8e
Page long output in interactive mode
author | Guido Berhoerster <guido+pwm@berhoerster.name> |
---|---|
date | Sat, 12 Aug 2017 10:41:52 +0200 |
parents | |
children |
comparison
equal
deleted
inserted
replaced
16:a07665727c19 | 17:a08ef0674d8e |
---|---|
1 /* $OpenBSD: queue.h,v 1.44 2016/09/09 20:31:46 millert Exp $ */ | |
2 /* $NetBSD: queue.h,v 1.11 1996/05/16 05:17:14 mycroft Exp $ */ | |
3 | |
4 /* | |
5 * Copyright (c) 1991, 1993 | |
6 * The Regents of the University of California. All rights reserved. | |
7 * | |
8 * Redistribution and use in source and binary forms, with or without | |
9 * modification, are permitted provided that the following conditions | |
10 * are met: | |
11 * 1. Redistributions of source code must retain the above copyright | |
12 * notice, this list of conditions and the following disclaimer. | |
13 * 2. Redistributions in binary form must reproduce the above copyright | |
14 * notice, this list of conditions and the following disclaimer in the | |
15 * documentation and/or other materials provided with the distribution. | |
16 * 3. Neither the name of the University nor the names of its contributors | |
17 * may be used to endorse or promote products derived from this software | |
18 * without specific prior written permission. | |
19 * | |
20 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND | |
21 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | |
22 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE | |
23 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE | |
24 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | |
25 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS | |
26 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) | |
27 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT | |
28 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY | |
29 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF | |
30 * SUCH DAMAGE. | |
31 * | |
32 * @(#)queue.h 8.5 (Berkeley) 8/20/94 | |
33 */ | |
34 | |
35 #ifndef _SYS_QUEUE_H_ | |
36 #define _SYS_QUEUE_H_ | |
37 | |
38 #include <stddef.h> | |
39 | |
40 /* | |
41 * This file defines five types of data structures: singly-linked lists, | |
42 * lists, simple queues, tail queues and XOR simple queues. | |
43 * | |
44 * | |
45 * A singly-linked list is headed by a single forward pointer. The elements | |
46 * are singly linked for minimum space and pointer manipulation overhead at | |
47 * the expense of O(n) removal for arbitrary elements. New elements can be | |
48 * added to the list after an existing element or at the head of the list. | |
49 * Elements being removed from the head of the list should use the explicit | |
50 * macro for this purpose for optimum efficiency. A singly-linked list may | |
51 * only be traversed in the forward direction. Singly-linked lists are ideal | |
52 * for applications with large datasets and few or no removals or for | |
53 * implementing a LIFO queue. | |
54 * | |
55 * A list is headed by a single forward pointer (or an array of forward | |
56 * pointers for a hash table header). The elements are doubly linked | |
57 * so that an arbitrary element can be removed without a need to | |
58 * traverse the list. New elements can be added to the list before | |
59 * or after an existing element or at the head of the list. A list | |
60 * may only be traversed in the forward direction. | |
61 * | |
62 * A simple queue is headed by a pair of pointers, one to the head of the | |
63 * list and the other to the tail of the list. The elements are singly | |
64 * linked to save space, so elements can only be removed from the | |
65 * head of the list. New elements can be added to the list before or after | |
66 * an existing element, at the head of the list, or at the end of the | |
67 * list. A simple queue may only be traversed in the forward direction. | |
68 * | |
69 * A tail queue is headed by a pair of pointers, one to the head of the | |
70 * list and the other to the tail of the list. The elements are doubly | |
71 * linked so that an arbitrary element can be removed without a need to | |
72 * traverse the list. New elements can be added to the list before or | |
73 * after an existing element, at the head of the list, or at the end of | |
74 * the list. A tail queue may be traversed in either direction. | |
75 * | |
76 * An XOR simple queue is used in the same way as a regular simple queue. | |
77 * The difference is that the head structure also includes a "cookie" that | |
78 * is XOR'd with the queue pointer (first, last or next) to generate the | |
79 * real pointer value. | |
80 * | |
81 * For details on the use of these macros, see the queue(3) manual page. | |
82 */ | |
83 | |
84 #if defined(QUEUE_MACRO_DEBUG) || (defined(_KERNEL) && defined(DIAGNOSTIC)) | |
85 #define _Q_INVALIDATE(a) (a) = ((void *)-1) | |
86 #else | |
87 #define _Q_INVALIDATE(a) | |
88 #endif | |
89 | |
90 /* | |
91 * Singly-linked List definitions. | |
92 */ | |
93 #define SLIST_HEAD(name, type) \ | |
94 struct name { \ | |
95 struct type *slh_first; /* first element */ \ | |
96 } | |
97 | |
98 #define SLIST_HEAD_INITIALIZER(head) \ | |
99 { NULL } | |
100 | |
101 #define SLIST_ENTRY(type) \ | |
102 struct { \ | |
103 struct type *sle_next; /* next element */ \ | |
104 } | |
105 | |
106 /* | |
107 * Singly-linked List access methods. | |
108 */ | |
109 #define SLIST_FIRST(head) ((head)->slh_first) | |
110 #define SLIST_END(head) NULL | |
111 #define SLIST_EMPTY(head) (SLIST_FIRST(head) == SLIST_END(head)) | |
112 #define SLIST_NEXT(elm, field) ((elm)->field.sle_next) | |
113 | |
114 #define SLIST_FOREACH(var, head, field) \ | |
115 for((var) = SLIST_FIRST(head); \ | |
116 (var) != SLIST_END(head); \ | |
117 (var) = SLIST_NEXT(var, field)) | |
118 | |
119 #define SLIST_FOREACH_SAFE(var, head, field, tvar) \ | |
120 for ((var) = SLIST_FIRST(head); \ | |
121 (var) && ((tvar) = SLIST_NEXT(var, field), 1); \ | |
122 (var) = (tvar)) | |
123 | |
124 /* | |
125 * Singly-linked List functions. | |
126 */ | |
127 #define SLIST_INIT(head) { \ | |
128 SLIST_FIRST(head) = SLIST_END(head); \ | |
129 } | |
130 | |
131 #define SLIST_INSERT_AFTER(slistelm, elm, field) do { \ | |
132 (elm)->field.sle_next = (slistelm)->field.sle_next; \ | |
133 (slistelm)->field.sle_next = (elm); \ | |
134 } while (0) | |
135 | |
136 #define SLIST_INSERT_HEAD(head, elm, field) do { \ | |
137 (elm)->field.sle_next = (head)->slh_first; \ | |
138 (head)->slh_first = (elm); \ | |
139 } while (0) | |
140 | |
141 #define SLIST_REMOVE_AFTER(elm, field) do { \ | |
142 (elm)->field.sle_next = (elm)->field.sle_next->field.sle_next; \ | |
143 } while (0) | |
144 | |
145 #define SLIST_REMOVE_HEAD(head, field) do { \ | |
146 (head)->slh_first = (head)->slh_first->field.sle_next; \ | |
147 } while (0) | |
148 | |
149 #define SLIST_REMOVE(head, elm, type, field) do { \ | |
150 if ((head)->slh_first == (elm)) { \ | |
151 SLIST_REMOVE_HEAD((head), field); \ | |
152 } else { \ | |
153 struct type *curelm = (head)->slh_first; \ | |
154 \ | |
155 while (curelm->field.sle_next != (elm)) \ | |
156 curelm = curelm->field.sle_next; \ | |
157 curelm->field.sle_next = \ | |
158 curelm->field.sle_next->field.sle_next; \ | |
159 } \ | |
160 _Q_INVALIDATE((elm)->field.sle_next); \ | |
161 } while (0) | |
162 | |
163 /* | |
164 * List definitions. | |
165 */ | |
166 #define LIST_HEAD(name, type) \ | |
167 struct name { \ | |
168 struct type *lh_first; /* first element */ \ | |
169 } | |
170 | |
171 #define LIST_HEAD_INITIALIZER(head) \ | |
172 { NULL } | |
173 | |
174 #define LIST_ENTRY(type) \ | |
175 struct { \ | |
176 struct type *le_next; /* next element */ \ | |
177 struct type **le_prev; /* address of previous next element */ \ | |
178 } | |
179 | |
180 /* | |
181 * List access methods. | |
182 */ | |
183 #define LIST_FIRST(head) ((head)->lh_first) | |
184 #define LIST_END(head) NULL | |
185 #define LIST_EMPTY(head) (LIST_FIRST(head) == LIST_END(head)) | |
186 #define LIST_NEXT(elm, field) ((elm)->field.le_next) | |
187 | |
188 #define LIST_FOREACH(var, head, field) \ | |
189 for((var) = LIST_FIRST(head); \ | |
190 (var)!= LIST_END(head); \ | |
191 (var) = LIST_NEXT(var, field)) | |
192 | |
193 #define LIST_FOREACH_SAFE(var, head, field, tvar) \ | |
194 for ((var) = LIST_FIRST(head); \ | |
195 (var) && ((tvar) = LIST_NEXT(var, field), 1); \ | |
196 (var) = (tvar)) | |
197 | |
198 /* | |
199 * List functions. | |
200 */ | |
201 #define LIST_INIT(head) do { \ | |
202 LIST_FIRST(head) = LIST_END(head); \ | |
203 } while (0) | |
204 | |
205 #define LIST_INSERT_AFTER(listelm, elm, field) do { \ | |
206 if (((elm)->field.le_next = (listelm)->field.le_next) != NULL) \ | |
207 (listelm)->field.le_next->field.le_prev = \ | |
208 &(elm)->field.le_next; \ | |
209 (listelm)->field.le_next = (elm); \ | |
210 (elm)->field.le_prev = &(listelm)->field.le_next; \ | |
211 } while (0) | |
212 | |
213 #define LIST_INSERT_BEFORE(listelm, elm, field) do { \ | |
214 (elm)->field.le_prev = (listelm)->field.le_prev; \ | |
215 (elm)->field.le_next = (listelm); \ | |
216 *(listelm)->field.le_prev = (elm); \ | |
217 (listelm)->field.le_prev = &(elm)->field.le_next; \ | |
218 } while (0) | |
219 | |
220 #define LIST_INSERT_HEAD(head, elm, field) do { \ | |
221 if (((elm)->field.le_next = (head)->lh_first) != NULL) \ | |
222 (head)->lh_first->field.le_prev = &(elm)->field.le_next;\ | |
223 (head)->lh_first = (elm); \ | |
224 (elm)->field.le_prev = &(head)->lh_first; \ | |
225 } while (0) | |
226 | |
227 #define LIST_REMOVE(elm, field) do { \ | |
228 if ((elm)->field.le_next != NULL) \ | |
229 (elm)->field.le_next->field.le_prev = \ | |
230 (elm)->field.le_prev; \ | |
231 *(elm)->field.le_prev = (elm)->field.le_next; \ | |
232 _Q_INVALIDATE((elm)->field.le_prev); \ | |
233 _Q_INVALIDATE((elm)->field.le_next); \ | |
234 } while (0) | |
235 | |
236 #define LIST_REPLACE(elm, elm2, field) do { \ | |
237 if (((elm2)->field.le_next = (elm)->field.le_next) != NULL) \ | |
238 (elm2)->field.le_next->field.le_prev = \ | |
239 &(elm2)->field.le_next; \ | |
240 (elm2)->field.le_prev = (elm)->field.le_prev; \ | |
241 *(elm2)->field.le_prev = (elm2); \ | |
242 _Q_INVALIDATE((elm)->field.le_prev); \ | |
243 _Q_INVALIDATE((elm)->field.le_next); \ | |
244 } while (0) | |
245 | |
246 /* | |
247 * Simple queue definitions. | |
248 */ | |
249 #define SIMPLEQ_HEAD(name, type) \ | |
250 struct name { \ | |
251 struct type *sqh_first; /* first element */ \ | |
252 struct type **sqh_last; /* addr of last next element */ \ | |
253 } | |
254 | |
255 #define SIMPLEQ_HEAD_INITIALIZER(head) \ | |
256 { NULL, &(head).sqh_first } | |
257 | |
258 #define SIMPLEQ_ENTRY(type) \ | |
259 struct { \ | |
260 struct type *sqe_next; /* next element */ \ | |
261 } | |
262 | |
263 /* | |
264 * Simple queue access methods. | |
265 */ | |
266 #define SIMPLEQ_FIRST(head) ((head)->sqh_first) | |
267 #define SIMPLEQ_END(head) NULL | |
268 #define SIMPLEQ_EMPTY(head) (SIMPLEQ_FIRST(head) == SIMPLEQ_END(head)) | |
269 #define SIMPLEQ_NEXT(elm, field) ((elm)->field.sqe_next) | |
270 | |
271 #define SIMPLEQ_FOREACH(var, head, field) \ | |
272 for((var) = SIMPLEQ_FIRST(head); \ | |
273 (var) != SIMPLEQ_END(head); \ | |
274 (var) = SIMPLEQ_NEXT(var, field)) | |
275 | |
276 #define SIMPLEQ_FOREACH_SAFE(var, head, field, tvar) \ | |
277 for ((var) = SIMPLEQ_FIRST(head); \ | |
278 (var) && ((tvar) = SIMPLEQ_NEXT(var, field), 1); \ | |
279 (var) = (tvar)) | |
280 | |
281 /* | |
282 * Simple queue functions. | |
283 */ | |
284 #define SIMPLEQ_INIT(head) do { \ | |
285 (head)->sqh_first = NULL; \ | |
286 (head)->sqh_last = &(head)->sqh_first; \ | |
287 } while (0) | |
288 | |
289 #define SIMPLEQ_INSERT_HEAD(head, elm, field) do { \ | |
290 if (((elm)->field.sqe_next = (head)->sqh_first) == NULL) \ | |
291 (head)->sqh_last = &(elm)->field.sqe_next; \ | |
292 (head)->sqh_first = (elm); \ | |
293 } while (0) | |
294 | |
295 #define SIMPLEQ_INSERT_TAIL(head, elm, field) do { \ | |
296 (elm)->field.sqe_next = NULL; \ | |
297 *(head)->sqh_last = (elm); \ | |
298 (head)->sqh_last = &(elm)->field.sqe_next; \ | |
299 } while (0) | |
300 | |
301 #define SIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do { \ | |
302 if (((elm)->field.sqe_next = (listelm)->field.sqe_next) == NULL)\ | |
303 (head)->sqh_last = &(elm)->field.sqe_next; \ | |
304 (listelm)->field.sqe_next = (elm); \ | |
305 } while (0) | |
306 | |
307 #define SIMPLEQ_REMOVE_HEAD(head, field) do { \ | |
308 if (((head)->sqh_first = (head)->sqh_first->field.sqe_next) == NULL) \ | |
309 (head)->sqh_last = &(head)->sqh_first; \ | |
310 } while (0) | |
311 | |
312 #define SIMPLEQ_REMOVE_AFTER(head, elm, field) do { \ | |
313 if (((elm)->field.sqe_next = (elm)->field.sqe_next->field.sqe_next) \ | |
314 == NULL) \ | |
315 (head)->sqh_last = &(elm)->field.sqe_next; \ | |
316 } while (0) | |
317 | |
318 #define SIMPLEQ_CONCAT(head1, head2) do { \ | |
319 if (!SIMPLEQ_EMPTY((head2))) { \ | |
320 *(head1)->sqh_last = (head2)->sqh_first; \ | |
321 (head1)->sqh_last = (head2)->sqh_last; \ | |
322 SIMPLEQ_INIT((head2)); \ | |
323 } \ | |
324 } while (0) | |
325 | |
326 /* | |
327 * XOR Simple queue definitions. | |
328 */ | |
329 #define XSIMPLEQ_HEAD(name, type) \ | |
330 struct name { \ | |
331 struct type *sqx_first; /* first element */ \ | |
332 struct type **sqx_last; /* addr of last next element */ \ | |
333 unsigned long sqx_cookie; \ | |
334 } | |
335 | |
336 #define XSIMPLEQ_ENTRY(type) \ | |
337 struct { \ | |
338 struct type *sqx_next; /* next element */ \ | |
339 } | |
340 | |
341 /* | |
342 * XOR Simple queue access methods. | |
343 */ | |
344 #define XSIMPLEQ_XOR(head, ptr) ((__typeof(ptr))((head)->sqx_cookie ^ \ | |
345 (unsigned long)(ptr))) | |
346 #define XSIMPLEQ_FIRST(head) XSIMPLEQ_XOR(head, ((head)->sqx_first)) | |
347 #define XSIMPLEQ_END(head) NULL | |
348 #define XSIMPLEQ_EMPTY(head) (XSIMPLEQ_FIRST(head) == XSIMPLEQ_END(head)) | |
349 #define XSIMPLEQ_NEXT(head, elm, field) XSIMPLEQ_XOR(head, ((elm)->field.sqx_next)) | |
350 | |
351 | |
352 #define XSIMPLEQ_FOREACH(var, head, field) \ | |
353 for ((var) = XSIMPLEQ_FIRST(head); \ | |
354 (var) != XSIMPLEQ_END(head); \ | |
355 (var) = XSIMPLEQ_NEXT(head, var, field)) | |
356 | |
357 #define XSIMPLEQ_FOREACH_SAFE(var, head, field, tvar) \ | |
358 for ((var) = XSIMPLEQ_FIRST(head); \ | |
359 (var) && ((tvar) = XSIMPLEQ_NEXT(head, var, field), 1); \ | |
360 (var) = (tvar)) | |
361 | |
362 /* | |
363 * XOR Simple queue functions. | |
364 */ | |
365 #define XSIMPLEQ_INIT(head) do { \ | |
366 arc4random_buf(&(head)->sqx_cookie, sizeof((head)->sqx_cookie)); \ | |
367 (head)->sqx_first = XSIMPLEQ_XOR(head, NULL); \ | |
368 (head)->sqx_last = XSIMPLEQ_XOR(head, &(head)->sqx_first); \ | |
369 } while (0) | |
370 | |
371 #define XSIMPLEQ_INSERT_HEAD(head, elm, field) do { \ | |
372 if (((elm)->field.sqx_next = (head)->sqx_first) == \ | |
373 XSIMPLEQ_XOR(head, NULL)) \ | |
374 (head)->sqx_last = XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \ | |
375 (head)->sqx_first = XSIMPLEQ_XOR(head, (elm)); \ | |
376 } while (0) | |
377 | |
378 #define XSIMPLEQ_INSERT_TAIL(head, elm, field) do { \ | |
379 (elm)->field.sqx_next = XSIMPLEQ_XOR(head, NULL); \ | |
380 *(XSIMPLEQ_XOR(head, (head)->sqx_last)) = XSIMPLEQ_XOR(head, (elm)); \ | |
381 (head)->sqx_last = XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \ | |
382 } while (0) | |
383 | |
384 #define XSIMPLEQ_INSERT_AFTER(head, listelm, elm, field) do { \ | |
385 if (((elm)->field.sqx_next = (listelm)->field.sqx_next) == \ | |
386 XSIMPLEQ_XOR(head, NULL)) \ | |
387 (head)->sqx_last = XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \ | |
388 (listelm)->field.sqx_next = XSIMPLEQ_XOR(head, (elm)); \ | |
389 } while (0) | |
390 | |
391 #define XSIMPLEQ_REMOVE_HEAD(head, field) do { \ | |
392 if (((head)->sqx_first = XSIMPLEQ_XOR(head, \ | |
393 (head)->sqx_first)->field.sqx_next) == XSIMPLEQ_XOR(head, NULL)) \ | |
394 (head)->sqx_last = XSIMPLEQ_XOR(head, &(head)->sqx_first); \ | |
395 } while (0) | |
396 | |
397 #define XSIMPLEQ_REMOVE_AFTER(head, elm, field) do { \ | |
398 if (((elm)->field.sqx_next = XSIMPLEQ_XOR(head, \ | |
399 (elm)->field.sqx_next)->field.sqx_next) \ | |
400 == XSIMPLEQ_XOR(head, NULL)) \ | |
401 (head)->sqx_last = \ | |
402 XSIMPLEQ_XOR(head, &(elm)->field.sqx_next); \ | |
403 } while (0) | |
404 | |
405 | |
406 /* | |
407 * Tail queue definitions. | |
408 */ | |
409 #define TAILQ_HEAD(name, type) \ | |
410 struct name { \ | |
411 struct type *tqh_first; /* first element */ \ | |
412 struct type **tqh_last; /* addr of last next element */ \ | |
413 } | |
414 | |
415 #define TAILQ_HEAD_INITIALIZER(head) \ | |
416 { NULL, &(head).tqh_first } | |
417 | |
418 #define TAILQ_ENTRY(type) \ | |
419 struct { \ | |
420 struct type *tqe_next; /* next element */ \ | |
421 struct type **tqe_prev; /* address of previous next element */ \ | |
422 } | |
423 | |
424 /* | |
425 * Tail queue access methods. | |
426 */ | |
427 #define TAILQ_FIRST(head) ((head)->tqh_first) | |
428 #define TAILQ_END(head) NULL | |
429 #define TAILQ_NEXT(elm, field) ((elm)->field.tqe_next) | |
430 #define TAILQ_LAST(head, headname) \ | |
431 (*(((struct headname *)((head)->tqh_last))->tqh_last)) | |
432 /* XXX */ | |
433 #define TAILQ_PREV(elm, headname, field) \ | |
434 (*(((struct headname *)((elm)->field.tqe_prev))->tqh_last)) | |
435 #define TAILQ_EMPTY(head) \ | |
436 (TAILQ_FIRST(head) == TAILQ_END(head)) | |
437 | |
438 #define TAILQ_FOREACH(var, head, field) \ | |
439 for((var) = TAILQ_FIRST(head); \ | |
440 (var) != TAILQ_END(head); \ | |
441 (var) = TAILQ_NEXT(var, field)) | |
442 | |
443 #define TAILQ_FOREACH_SAFE(var, head, field, tvar) \ | |
444 for ((var) = TAILQ_FIRST(head); \ | |
445 (var) != TAILQ_END(head) && \ | |
446 ((tvar) = TAILQ_NEXT(var, field), 1); \ | |
447 (var) = (tvar)) | |
448 | |
449 | |
450 #define TAILQ_FOREACH_REVERSE(var, head, headname, field) \ | |
451 for((var) = TAILQ_LAST(head, headname); \ | |
452 (var) != TAILQ_END(head); \ | |
453 (var) = TAILQ_PREV(var, headname, field)) | |
454 | |
455 #define TAILQ_FOREACH_REVERSE_SAFE(var, head, headname, field, tvar) \ | |
456 for ((var) = TAILQ_LAST(head, headname); \ | |
457 (var) != TAILQ_END(head) && \ | |
458 ((tvar) = TAILQ_PREV(var, headname, field), 1); \ | |
459 (var) = (tvar)) | |
460 | |
461 /* | |
462 * Tail queue functions. | |
463 */ | |
464 #define TAILQ_INIT(head) do { \ | |
465 (head)->tqh_first = NULL; \ | |
466 (head)->tqh_last = &(head)->tqh_first; \ | |
467 } while (0) | |
468 | |
469 #define TAILQ_INSERT_HEAD(head, elm, field) do { \ | |
470 if (((elm)->field.tqe_next = (head)->tqh_first) != NULL) \ | |
471 (head)->tqh_first->field.tqe_prev = \ | |
472 &(elm)->field.tqe_next; \ | |
473 else \ | |
474 (head)->tqh_last = &(elm)->field.tqe_next; \ | |
475 (head)->tqh_first = (elm); \ | |
476 (elm)->field.tqe_prev = &(head)->tqh_first; \ | |
477 } while (0) | |
478 | |
479 #define TAILQ_INSERT_TAIL(head, elm, field) do { \ | |
480 (elm)->field.tqe_next = NULL; \ | |
481 (elm)->field.tqe_prev = (head)->tqh_last; \ | |
482 *(head)->tqh_last = (elm); \ | |
483 (head)->tqh_last = &(elm)->field.tqe_next; \ | |
484 } while (0) | |
485 | |
486 #define TAILQ_INSERT_AFTER(head, listelm, elm, field) do { \ | |
487 if (((elm)->field.tqe_next = (listelm)->field.tqe_next) != NULL)\ | |
488 (elm)->field.tqe_next->field.tqe_prev = \ | |
489 &(elm)->field.tqe_next; \ | |
490 else \ | |
491 (head)->tqh_last = &(elm)->field.tqe_next; \ | |
492 (listelm)->field.tqe_next = (elm); \ | |
493 (elm)->field.tqe_prev = &(listelm)->field.tqe_next; \ | |
494 } while (0) | |
495 | |
496 #define TAILQ_INSERT_BEFORE(listelm, elm, field) do { \ | |
497 (elm)->field.tqe_prev = (listelm)->field.tqe_prev; \ | |
498 (elm)->field.tqe_next = (listelm); \ | |
499 *(listelm)->field.tqe_prev = (elm); \ | |
500 (listelm)->field.tqe_prev = &(elm)->field.tqe_next; \ | |
501 } while (0) | |
502 | |
503 #define TAILQ_REMOVE(head, elm, field) do { \ | |
504 if (((elm)->field.tqe_next) != NULL) \ | |
505 (elm)->field.tqe_next->field.tqe_prev = \ | |
506 (elm)->field.tqe_prev; \ | |
507 else \ | |
508 (head)->tqh_last = (elm)->field.tqe_prev; \ | |
509 *(elm)->field.tqe_prev = (elm)->field.tqe_next; \ | |
510 _Q_INVALIDATE((elm)->field.tqe_prev); \ | |
511 _Q_INVALIDATE((elm)->field.tqe_next); \ | |
512 } while (0) | |
513 | |
514 #define TAILQ_REPLACE(head, elm, elm2, field) do { \ | |
515 if (((elm2)->field.tqe_next = (elm)->field.tqe_next) != NULL) \ | |
516 (elm2)->field.tqe_next->field.tqe_prev = \ | |
517 &(elm2)->field.tqe_next; \ | |
518 else \ | |
519 (head)->tqh_last = &(elm2)->field.tqe_next; \ | |
520 (elm2)->field.tqe_prev = (elm)->field.tqe_prev; \ | |
521 *(elm2)->field.tqe_prev = (elm2); \ | |
522 _Q_INVALIDATE((elm)->field.tqe_prev); \ | |
523 _Q_INVALIDATE((elm)->field.tqe_next); \ | |
524 } while (0) | |
525 | |
526 #define TAILQ_CONCAT(head1, head2, field) do { \ | |
527 if (!TAILQ_EMPTY(head2)) { \ | |
528 *(head1)->tqh_last = (head2)->tqh_first; \ | |
529 (head2)->tqh_first->field.tqe_prev = (head1)->tqh_last; \ | |
530 (head1)->tqh_last = (head2)->tqh_last; \ | |
531 TAILQ_INIT((head2)); \ | |
532 } \ | |
533 } while (0) | |
534 | |
535 #endif /* !_SYS_QUEUE_H_ */ |